Difference between revisions of "Plato"
(Created page with "<div id="content_view" class="wiki" style="display: block"> =Plato= {| class="wiki_table" | Lat: 51.6°N, Long: 9.38°W, Diam: 100.68 km, Depth: 2 km, [/R%C3%BCkl%203 Rük...") |
|||
Line 40: | Line 40: | ||
* Attempts to catalog the pits by visual observation are documented by [/Walter%20Goodacre Walter Goodacre] starting on [http://articles.adsabs.harvard.edu/full/seri/MmBAA/0020//0000110.000.html page 94] of the ''Memoirs of the BAA'' (Vol. 20, Part 3), accompanied by numerous drawings starting with [http://articles.adsabs.harvard.edu//full/seri/MmBAA/0020//0000129.000.html Plate 1]. | * Attempts to catalog the pits by visual observation are documented by [/Walter%20Goodacre Walter Goodacre] starting on [http://articles.adsabs.harvard.edu/full/seri/MmBAA/0020//0000110.000.html page 94] of the ''Memoirs of the BAA'' (Vol. 20, Part 3), accompanied by numerous drawings starting with [http://articles.adsabs.harvard.edu//full/seri/MmBAA/0020//0000129.000.html Plate 1]. | ||
* For a correct list of the pits and their sizes based on space imagery see [/Plato%20craterlets Plato craterlets]. | * For a correct list of the pits and their sizes based on space imagery see [/Plato%20craterlets Plato craterlets]. | ||
− | * Rim heights: as noted by Elger, the rim of '''Plato''', like that of almost any crater of substantial size, is irregular in height. In ''[/Neison%2C%201876 Neison]'' the peak Elger mentions on the west rim, casting the longest shadow at sunset, was called '''Plato Zeta'''. The three on the east rim, casting the three longest shadows at sunrise (also refered to by Elger) were, from south to north, '''Gamma''', '''Delta''' and '''Epsilon'''. It should be noted that these are not necessarily the tallest peaks -- they are simply the ones best located to cast conspicuous shadows. The shadows in modern photos (as measured by [/LTVT LTVT]) suggest the "'''Zeta'''" peak (on the west) rises about 2900 m above the crater floor. The three classic peaks on the east rise about 3200, 2600, and 1900 m. Hence, contrary to Elger, the '''Gamma''' peak appears to be a little taller than "'''Zeta'''", rather than the other way around. Also, there are actually secondary peaks between '''Gamma''' and '''Delta''', and between '''Delta''' and '''Epsilon''', both of which are taller than '''Epsilon''', making the latter the fifth tallest peak on the east rim (not the third). The ups and downs of Plato's rim (including at positions not well situated to cast shadows) can perhaps best be visualized in a [http://www.flickr.com/photos/ltvt/500348827/ stereo view]. In this view, as in Wes Higgins’ photo, the "'''Zeta'''" peak is particularly conspicuous, probably because it is more massive than the '''Gamma''' peak. It might be noted that in the ''[/IAU%20Nomenclature System of Lunar Craters]'' maps, once endorsed by the [/IAU IAU], the meaning of '''Plato Zeta''' was apparently changed to refer to the large detached and sunken massif below the west wall. That massif is not responsible for the long shadows seen at sunset. The longest shadow at sunset comes from the peak above it in Wes Higgins’ photo. Also, the names "'''Plato Omega'''" and "'''Plato Phi'''" suggested in the historic [http:// | + | * Rim heights: as noted by Elger, the rim of '''Plato''', like that of almost any crater of substantial size, is irregular in height. In ''[/Neison%2C%201876 Neison]'' the peak Elger mentions on the west rim, casting the longest shadow at sunset, was called '''Plato Zeta'''. The three on the east rim, casting the three longest shadows at sunrise (also refered to by Elger) were, from south to north, '''Gamma''', '''Delta''' and '''Epsilon'''. It should be noted that these are not necessarily the tallest peaks -- they are simply the ones best located to cast conspicuous shadows. The shadows in modern photos (as measured by [/LTVT LTVT]) suggest the "'''Zeta'''" peak (on the west) rises about 2900 m above the crater floor. The three classic peaks on the east rise about 3200, 2600, and 1900 m. Hence, contrary to Elger, the '''Gamma''' peak appears to be a little taller than "'''Zeta'''", rather than the other way around. Also, there are actually secondary peaks between '''Gamma''' and '''Delta''', and between '''Delta''' and '''Epsilon''', both of which are taller than '''Epsilon''', making the latter the fifth tallest peak on the east rim (not the third). The ups and downs of Plato's rim (including at positions not well situated to cast shadows) can perhaps best be visualized in a [http://www.flickr.com/photos/ltvt/500348827/ stereo view]. In this view, as in Wes Higgins’ photo, the "'''Zeta'''" peak is particularly conspicuous, probably because it is more massive than the '''Gamma''' peak. It might be noted that in the ''[/IAU%20Nomenclature System of Lunar Craters]'' maps, once endorsed by the [/IAU IAU], the meaning of '''Plato Zeta''' was apparently changed to refer to the large detached and sunken massif below the west wall. That massif is not responsible for the long shadows seen at sunset. The longest shadow at sunset comes from the peak above it in Wes Higgins’ photo. Also, the names "'''Plato Omega'''" and "'''Plato Phi'''" suggested in the historic [http://www2.lpod.org/wiki/March_15,_2004 Peaks of Plato] LPOD referenced below should not be used. Those names both had well-defined meanings in the ''[/IAU%20Nomenclature System of Lunar Craters]'' and refered to completely different peaks near the perimeter of the ejecta blanket. Their locations are carefully indicated on [http://www.lpi.usra.edu/resources/mapcatalog/LAC/lac12/ LAC 12] from 1967. The rim heights given above are quite different from those (copied from LAC-12) mentioned in the LPOD, but are considered (at least by me) more reliable, because values in the range quoted here are obtained from a wide variety of photos at different sun angles. In addition to peaks, the lowest points on the rim are of equal interest. When combined with the peaks they give the impression that the west rim generally diminishes in height as one goes south, while the east rim generally increases in height (going in the same direction). To the north of the main peak on the west rim, the lowest shadow-casting point descends to within about 1400 m of the crater floor; but just to the south of the sunken massif, heights as low as 1100 m are encountered on the rim, followed almost immediately by a pair of peaks about 2000 m tall. On the east, the low points on the rim are about 1350 m above the floor to the north of the '''Epsilon''' peak, and 1700 m just to the north of the '''Gamma''' peak. Around '''Plato G''' there is a notch in the east rim which may well be the lowest point in that area, but its exact height is difficult to evaluate with the shadow technique, since the rim there is, itself, thrown into shadow by '''Plato G'''. There appear to be deep notches in the north-east and south rims as well, but they are not situated in positions suitable for evaluation using the shadow method (for them, see the [http://www.flickr.com/photos/ltvt/500348827/ stereo view]). <span class="membersnap">- [http://www.wikispaces.com/user/view/JimMosher [[Image:JimMosher-lg.jpg|16px|JimMosher]]] [http://www.wikispaces.com/user/view/JimMosher JimMosher]</span> |
* Height of '''Plato''''s floor: the most reliable evidence would seem to be the data from the [/Clementine Clementine] LIDAR (altimeter) experiment, which can be plotted with [/LTVT LTVT]. Those data suggest that the floor of '''Plato''' is is about 500 m higher than the plains of [/Mare%20Imbrium Mare Imbrium], to the south; and perhaps 100 m above [/Mare%20Frigoris Mare Frigoris], to the north. '''Plato''''s floor appears to be level (that is, it follows the Moon's radius of curvature) within the accuracy of the LIDAR data. <span class="membersnap">- [http://www.wikispaces.com/user/view/JimMosher [[Image:JimMosher-lg.jpg|16px|JimMosher]]] [http://www.wikispaces.com/user/view/JimMosher JimMosher]</span> | * Height of '''Plato''''s floor: the most reliable evidence would seem to be the data from the [/Clementine Clementine] LIDAR (altimeter) experiment, which can be plotted with [/LTVT LTVT]. Those data suggest that the floor of '''Plato''' is is about 500 m higher than the plains of [/Mare%20Imbrium Mare Imbrium], to the south; and perhaps 100 m above [/Mare%20Frigoris Mare Frigoris], to the north. '''Plato''''s floor appears to be level (that is, it follows the Moon's radius of curvature) within the accuracy of the LIDAR data. <span class="membersnap">- [http://www.wikispaces.com/user/view/JimMosher [[Image:JimMosher-lg.jpg|16px|JimMosher]]] [http://www.wikispaces.com/user/view/JimMosher JimMosher]</span> | ||
* The notion that '''Plato''''s floor darkens in an absolute sense as the Sun rises rises over it, which Elger takes as an "an established fact," seems to have originated with British amateur [/Birt W. R. Birt] in about 1871; and was repeated not only by Elger (1895), but also by [/Neison%2C%201876 Neison] (1876) and [/Goodacre Goodacre] (1931). A little before 1900, American astronomer [/Pickering W. H. Pickering] reported similar areas of darkening in [/Alphonsus Alphonsus], [/Riccioli Riccioli] and [/Atlas Atlas]. Like Birt, Pickering assumed the darkening was evidence of physical change -- in Pickering's mind, most probably a monthly ebb and flow of lunar vegetation. As photometric measurements in the mid 20th century demonstrated, the darkening is simply an illusion: all surface areas brighten with the approach of [/Full%20Moon Full Moon], but [/mare mare] areas -- like the floor of '''Plato''' -- brighten less strongly, making them appear darker by contrast. (''see'' Ashbrook, 1959) <span class="membersnap">- [http://www.wikispaces.com/user/view/JimMosher [[Image:JimMosher-lg.jpg|16px|JimMosher]]] [http://www.wikispaces.com/user/view/JimMosher JimMosher]</span> | * The notion that '''Plato''''s floor darkens in an absolute sense as the Sun rises rises over it, which Elger takes as an "an established fact," seems to have originated with British amateur [/Birt W. R. Birt] in about 1871; and was repeated not only by Elger (1895), but also by [/Neison%2C%201876 Neison] (1876) and [/Goodacre Goodacre] (1931). A little before 1900, American astronomer [/Pickering W. H. Pickering] reported similar areas of darkening in [/Alphonsus Alphonsus], [/Riccioli Riccioli] and [/Atlas Atlas]. Like Birt, Pickering assumed the darkening was evidence of physical change -- in Pickering's mind, most probably a monthly ebb and flow of lunar vegetation. As photometric measurements in the mid 20th century demonstrated, the darkening is simply an illusion: all surface areas brighten with the approach of [/Full%20Moon Full Moon], but [/mare mare] areas -- like the floor of '''Plato''' -- brighten less strongly, making them appear darker by contrast. (''see'' Ashbrook, 1959) <span class="membersnap">- [http://www.wikispaces.com/user/view/JimMosher [[Image:JimMosher-lg.jpg|16px|JimMosher]]] [http://www.wikispaces.com/user/view/JimMosher JimMosher]</span> | ||
Line 51: | Line 51: | ||
* The name '''Plato''' was suggested [/Riccioli Riccioli]. | * The name '''Plato''' was suggested [/Riccioli Riccioli]. | ||
* By the time Mary Blagg's ''[/Collated%20List Collated List]'' was prepared, all authorities consulted used Riccioli's suggestion, and it was adopted in that form into the original IAU nomenclature of ''[/Named%20Lunar%20Formations Named Lunar Formations]'' (Catalog number 1062). | * By the time Mary Blagg's ''[/Collated%20List Collated List]'' was prepared, all authorities consulted used Riccioli's suggestion, and it was adopted in that form into the original IAU nomenclature of ''[/Named%20Lunar%20Formations Named Lunar Formations]'' (Catalog number 1062). | ||
− | * ''[/Named%20Lunar%20Formations Named Lunar Formations]'' included the satellite feature '''Plato A''' whose name was later changed to [/Bliss Bliss]. It also included the designation '''Plato Z''' for an ill-defined valley to the north of '''Plato''', terminating near '''Plato T'''. This valley is illustrated on Sheet [http://the-moon. | + | * ''[/Named%20Lunar%20Formations Named Lunar Formations]'' included the satellite feature '''Plato A''' whose name was later changed to [/Bliss Bliss]. It also included the designation '''Plato Z''' for an ill-defined valley to the north of '''Plato''', terminating near '''Plato T'''. This valley is illustrated on Sheet [http://the-moon.us/wiki/SLC-D1 SLC D1] of the later ''[/System%20of%20Lunar%20Craters System of Lunar Craters]'', but the designation was not retained when lettered craters were added to the [/IAU%20Planetary%20Gazetteer IAU Planetary Gazetteer] in 2006. |
* Amateur astronomers have adopted various schemes of naming the [/Plato%20craterlets craterlets] on the floor of '''Plato''' (none of which have official IAU designations). Some of these schemes somewhat confusingly [http://www.cloudynights.com/ubbarchive/showflat.php/Cat/0/Number/520616 re-use] the IAU designations for lettered craters. | * Amateur astronomers have adopted various schemes of naming the [/Plato%20craterlets craterlets] on the floor of '''Plato''' (none of which have official IAU designations). Some of these schemes somewhat confusingly [http://www.cloudynights.com/ubbarchive/showflat.php/Cat/0/Number/520616 re-use] the IAU designations for lettered craters. | ||
* The greenish ''Rand Mc.Nally'' moon map and the same moon map in Patrick Moore's ''Atlas of the Universe'' (1983) use the unofficial name '''''Cape Plato''''' for a feature at 57° North, 7° West (north of '''Plato''', at [/Mare%20Frigoris Mare Frigoris]). | * The greenish ''Rand Mc.Nally'' moon map and the same moon map in Patrick Moore's ''Atlas of the Universe'' (1983) use the unofficial name '''''Cape Plato''''' for a feature at 57° North, 7° West (north of '''Plato''', at [/Mare%20Frigoris Mare Frigoris]). | ||
Line 57: | Line 57: | ||
[[Image:Plato_K%2BKA.jpg|Plato_K+KA.jpg]] Plato K and KA from LRO-WAC mosaic.<br /> <br /> | [[Image:Plato_K%2BKA.jpg|Plato_K+KA.jpg]] Plato K and KA from LRO-WAC mosaic.<br /> <br /> | ||
==LPOD Articles== | ==LPOD Articles== | ||
− | [http:// | + | [http://www2.lpod.org/wiki/November_30,_2006 An Image of Suprises.]<br /> [http://www2.lpod.org/wiki/October_31,_2006 Impossibly High Standard.]<br /> [http://www2.lpod.org/wiki/June_13,_2006 A Hot Day on Plato]<br /> [http://www2.lpod.org/wiki/January_17,_2006 Plato in My Dreams]<br /> [http://www2.lpod.org/wiki/April_21,_2005 Half a Crater Shadowed]<br /> [http://www2.lpod.org/wiki/March_15,_2004 Peaks of Plato]<br /> [http://www2.lpod.org/wiki/January_24,_2004 Platonic Nirvana]<br /> [http://www2.lpod.org/wiki/January_7,_2007 Lacus Niger Major]<br /> [http://www2.lpod.org/wiki/October_15,_2007 Good night Moon]<br /> [http://lpod.wikispaces.com/July%2028%2C%202008 Pushing the Envelope] (Smallest Detectable Lunar Crater).<br /> [http://lpod.wikispaces.com/August%2012%2C%202008 A Classic View] (shadow spires on Plato's floor, after local sunrise)..<br /> [http://lpod.wikispaces.com/April%2011%2C%202009 Peach-Pod]<br /> [http://lpod.wikispaces.com/June%206%2C%202009 Classic View] (darkness on Plato's floor, before local sunrise).<br /> [http://lpod.wikispaces.com/June%2027%2C%202009 Charcoal Excursion]<br /> [http://lpod.wikispaces.com/August%2015%2C%202009 Milk of Plato] (an interesting observation by Phil Morgan, of possible ''Ashen Light'' on the floor of Plato).<br /> <br /> |
==Lunar 100== | ==Lunar 100== | ||
[/Lunar%20100 L83]: Crater pits at limits of detection.<br /> <br /> | [/Lunar%20100 L83]: Crater pits at limits of detection.<br /> <br /> |
Revision as of 19:27, 11 April 2018
Contents
Plato
Lat: 51.6°N, Long: 9.38°W, Diam: 100.68 km, Depth: 2 km, [/R%C3%BCkl%203 Rükl: 3], [/Stratigraphy Upper Imbrian] |
Table of Contents
François Emond
Images
LPOD Photo Gallery Lunar Orbiter Images Kaguya HDTV
- Wes Higgins' image
Maps
([/LAC%20zone LAC zone] 12D3) USGS Digital Atlas PDF LAC map Geologic map
Description
Description: Elger
([/IAU%20Directions IAU Directions])
PLATO.--This beautiful walled-plain, 60 miles in diameter, with its bright border and dark steel-grey floor, has, from the time of Hevelius to the present, been one of the most familiar objects to lunar observers. In the rude maps of the seventeenth century it figures as the "Lacus Niger Major," an appellation which not inaptly describes its appearance under a high sun, when the sombre tone of its apparently smooth interior is in striking contrast to that of the isthmus on which the formation stands. It will repay observation under every phase, and though during the last thirty years no portion of the moon has been more diligently scrutinised than the floor; the neighbourhood includes a very great number of objects of every kind, which, not having received so much attention, will afford ample employment to the possessor of a good telescope during many lunations.
The border of Plato, varying in height from 3,000 to 4,000 feet above the interior, is crowned by several lofty peaks, the highest (7,400 feet) standing on the N. side of the curious little triangular formation on the W. wall. Those on the E., three in number, reckoning from N. to S., are respectively about 5,000, 6,000, and 7,000 feet in altitude above the floor. The circumvallation being very much broken and intersected by passes, exhibits many distinct breaches of continuity, especially on the S. There is a remarkable valley on the S.E., which, cutting through the border at a wide angle, suddenly turns towards the S.W., and descends the slope of the glacis in a more attenuated form. Another but shorter valley is traceable at sunrise on the E. On the N.E., the rampart is visibly dislocated, and the gap occupied by an intrusive mountain mass. This dislocation is not confined to the wall, but, under favourable conditions, may be traced across the floor to the broken S.W. border. It is probably a true "fault." On the N.W., the inner slope of the wall is very broad, and affords a fine example of a vast landslip.
The spots and faint light markings on the floor are of a particularly interesting character. During the years 1869 to 1871 they were systematically observed and discussed under the auspices of the Lunar Committee of the [/British%20Association British Association]. Among the forty or more spots recorded, six were found to be crater-cones. The remainder--or at least most of them--are extremely delicate objects, which vary in visibility in a way that is clearly independent of libration or solar altitude; and, what is also very suggestive, they are always found closely associated with the light markings,--standing either upon the surface of these features or close to their edges. Recent observations of these spots with a 13 inch telescope by Professor W.H. [/Pickering Pickering], under the exceptionally good conditions which prevail at Arequipa, Peru, have revived interest in the subject, for they tend to show that visible changes have taken place in the aspect of the principal crater-cones and of some of the other spots since they were so carefully and zealously scrutinised nearly a quarter of a century ago. The gradual darkening of the floor of Plato as the sun's altitude increases from 20 deg. till after full moon may be regarded as an established fact, though no feasible hypothesis has been advanced to account for it.
On the N.W. of Plato is a large bright crater, A; and, extending in a line from this towards the W., is a number of smaller rings, the whole group being well worth examination. On the N. there is a winding cleft, and some short crossed clefts in the rugged surface just beyond the foot of the wall, which I have seen with a 4 inch achromatic. The region on the E., imperfectly shown in the maps, includes much unrecorded detail. On the [/Mare%20Imbrium Mare Imbrium] S. of Plato is a large area enclosed by low ridges, to which [/Johann%20Schr%C3%B6ter Schroter] gave the name "[/Ancient%20Newton Newton]." It suggests the idea that it represents the ruin of a once imposing enclosure, of which the conspicuous mountain [/Mons%20Pico Pico] formed a part.
Description: Wikipedia
Additional Information
- IAU page: Plato
- Depth data from [/Kurt%20Fisher%20crater%20depths Kurt Fisher database]
- Pike, 1976: 2 km
- Westfall, 2000: 2 km
- Cherrington, 1969: 2.43 km
- Measurements of crater topography using Kaguya laser altimeter terrain profile graphs - LunarJim LunarJim Sep 26, 2011
- Crater Depth: Measurements on 4 axes separated by 45 degrees.
- Zero reference level = Moon average radius.
- Average floor level (average of lowest levels on 4 axes) = -2.55 km
- Average rim height (average of 8 rim data points) = -0.87 km
- Average crater depth (average rim height to average floor level) = 1.68 km
- Deepest point on crater floor (from zero reference level) = -2.59 km
- Max. crater depth (highest point on rim to deepest point on crater floor) = 2.25 km
- West rim slope 13°, east rim slope 15° ([/Pohn%2C%201963 Pohn, 1963])
- Plato is the crater with the second largest number of [/LTP lunar transient phenomena] reports: 40; A.P.S. Crotts (2007). (some the LTP reports refer to alleged changes in the pattern of craterlets on the floor, others to nothing more than the first/last touching of the curved floor by rays of sunlight streaming over low points in the rim at sunrise/sunset). - JimMosher JimMosher)
- Pits on floor first reported by [/Gruithuisen Gruithuisen] by 1824; [/Johann%20Schr%C3%B6ter Johann Schröter] had seen none ([/Epic%20Moon Sheehan and Dobbins], p 76).
- Attempts to catalog the pits by visual observation are documented by [/Walter%20Goodacre Walter Goodacre] starting on page 94 of the Memoirs of the BAA (Vol. 20, Part 3), accompanied by numerous drawings starting with Plate 1.
- For a correct list of the pits and their sizes based on space imagery see [/Plato%20craterlets Plato craterlets].
- Rim heights: as noted by Elger, the rim of Plato, like that of almost any crater of substantial size, is irregular in height. In [/Neison%2C%201876 Neison] the peak Elger mentions on the west rim, casting the longest shadow at sunset, was called Plato Zeta. The three on the east rim, casting the three longest shadows at sunrise (also refered to by Elger) were, from south to north, Gamma, Delta and Epsilon. It should be noted that these are not necessarily the tallest peaks -- they are simply the ones best located to cast conspicuous shadows. The shadows in modern photos (as measured by [/LTVT LTVT]) suggest the "Zeta" peak (on the west) rises about 2900 m above the crater floor. The three classic peaks on the east rise about 3200, 2600, and 1900 m. Hence, contrary to Elger, the Gamma peak appears to be a little taller than "Zeta", rather than the other way around. Also, there are actually secondary peaks between Gamma and Delta, and between Delta and Epsilon, both of which are taller than Epsilon, making the latter the fifth tallest peak on the east rim (not the third). The ups and downs of Plato's rim (including at positions not well situated to cast shadows) can perhaps best be visualized in a stereo view. In this view, as in Wes Higgins’ photo, the "Zeta" peak is particularly conspicuous, probably because it is more massive than the Gamma peak. It might be noted that in the [/IAU%20Nomenclature System of Lunar Craters] maps, once endorsed by the [/IAU IAU], the meaning of Plato Zeta was apparently changed to refer to the large detached and sunken massif below the west wall. That massif is not responsible for the long shadows seen at sunset. The longest shadow at sunset comes from the peak above it in Wes Higgins’ photo. Also, the names "Plato Omega" and "Plato Phi" suggested in the historic Peaks of Plato LPOD referenced below should not be used. Those names both had well-defined meanings in the [/IAU%20Nomenclature System of Lunar Craters] and refered to completely different peaks near the perimeter of the ejecta blanket. Their locations are carefully indicated on LAC 12 from 1967. The rim heights given above are quite different from those (copied from LAC-12) mentioned in the LPOD, but are considered (at least by me) more reliable, because values in the range quoted here are obtained from a wide variety of photos at different sun angles. In addition to peaks, the lowest points on the rim are of equal interest. When combined with the peaks they give the impression that the west rim generally diminishes in height as one goes south, while the east rim generally increases in height (going in the same direction). To the north of the main peak on the west rim, the lowest shadow-casting point descends to within about 1400 m of the crater floor; but just to the south of the sunken massif, heights as low as 1100 m are encountered on the rim, followed almost immediately by a pair of peaks about 2000 m tall. On the east, the low points on the rim are about 1350 m above the floor to the north of the Epsilon peak, and 1700 m just to the north of the Gamma peak. Around Plato G there is a notch in the east rim which may well be the lowest point in that area, but its exact height is difficult to evaluate with the shadow technique, since the rim there is, itself, thrown into shadow by Plato G. There appear to be deep notches in the north-east and south rims as well, but they are not situated in positions suitable for evaluation using the shadow method (for them, see the stereo view). - JimMosher JimMosher
- Height of Plato's floor: the most reliable evidence would seem to be the data from the [/Clementine Clementine] LIDAR (altimeter) experiment, which can be plotted with [/LTVT LTVT]. Those data suggest that the floor of Plato is is about 500 m higher than the plains of [/Mare%20Imbrium Mare Imbrium], to the south; and perhaps 100 m above [/Mare%20Frigoris Mare Frigoris], to the north. Plato's floor appears to be level (that is, it follows the Moon's radius of curvature) within the accuracy of the LIDAR data. - JimMosher JimMosher
- The notion that Plato's floor darkens in an absolute sense as the Sun rises rises over it, which Elger takes as an "an established fact," seems to have originated with British amateur [/Birt W. R. Birt] in about 1871; and was repeated not only by Elger (1895), but also by [/Neison%2C%201876 Neison] (1876) and [/Goodacre Goodacre] (1931). A little before 1900, American astronomer [/Pickering W. H. Pickering] reported similar areas of darkening in [/Alphonsus Alphonsus], [/Riccioli Riccioli] and [/Atlas Atlas]. Like Birt, Pickering assumed the darkening was evidence of physical change -- in Pickering's mind, most probably a monthly ebb and flow of lunar vegetation. As photometric measurements in the mid 20th century demonstrated, the darkening is simply an illusion: all surface areas brighten with the approach of [/Full%20Moon Full Moon], but [/mare mare] areas -- like the floor of Plato -- brighten less strongly, making them appear darker by contrast. (see Ashbrook, 1959) - JimMosher JimMosher
Nomenclature
- Named for Plato (428/427 BC – 348/347 BC), an ancient Greek philosopher.
- [/Langrenus Van Langren] called it Lacus Panciroli.
- [/Johannes%20Hevelius Johannes Hevelius] designated this crater Lacus Niger Major (the "Great Dark Lake").
- The name Plato was suggested [/Riccioli Riccioli].
- By the time Mary Blagg's [/Collated%20List Collated List] was prepared, all authorities consulted used Riccioli's suggestion, and it was adopted in that form into the original IAU nomenclature of [/Named%20Lunar%20Formations Named Lunar Formations] (Catalog number 1062).
- [/Named%20Lunar%20Formations Named Lunar Formations] included the satellite feature Plato A whose name was later changed to [/Bliss Bliss]. It also included the designation Plato Z for an ill-defined valley to the north of Plato, terminating near Plato T. This valley is illustrated on Sheet SLC D1 of the later [/System%20of%20Lunar%20Craters System of Lunar Craters], but the designation was not retained when lettered craters were added to the [/IAU%20Planetary%20Gazetteer IAU Planetary Gazetteer] in 2006.
- Amateur astronomers have adopted various schemes of naming the [/Plato%20craterlets craterlets] on the floor of Plato (none of which have official IAU designations). Some of these schemes somewhat confusingly re-use the IAU designations for lettered craters.
- The greenish Rand Mc.Nally moon map and the same moon map in Patrick Moore's Atlas of the Universe (1983) use the unofficial name Cape Plato for a feature at 57° North, 7° West (north of Plato, at [/Mare%20Frigoris Mare Frigoris]).
- Howard Eskildsen has likened the system of craters Plato K and Plato KA (in [/Mare%20Imbrium Mare Imbrium], near [/Montes%20Alpes Montes Alpes]) to "a snowman with broomsticks for arms."
Plato K and KA from LRO-WAC mosaic.
LPOD Articles
An Image of Suprises.
Impossibly High Standard.
A Hot Day on Plato
Plato in My Dreams
Half a Crater Shadowed
Peaks of Plato
Platonic Nirvana
Lacus Niger Major
Good night Moon
Pushing the Envelope (Smallest Detectable Lunar Crater).
A Classic View (shadow spires on Plato's floor, after local sunrise)..
Peach-Pod
Classic View (darkness on Plato's floor, before local sunrise).
Charcoal Excursion
Milk of Plato (an interesting observation by Phil Morgan, of possible Ashen Light on the floor of Plato).
Lunar 100
[/Lunar%20100 L83]: Crater pits at limits of detection.
Bibliography
- Ashbrook, J. 1959. A Plato Illusion. Sky and Telescope (December issue), p. 92.
- Marshall, K. P. and Mobberley, M. P. 1986. The Lunar Crater Plato. Journal of the British Astronomical Association. 96, 156-165.
- Wood, C.A. 200?. The Mysteries of Plato. S&T Online Article.
- Wood, C.A. Jul. 1999. The Mysteries of Plato. S&T July 199. v98 p122
- Google Scholar listing.
The lunar crater Plato in the Sourcebook Project (William R. Corliss)
- In Mysterious Universe, a handbook of astronomical anomalies (1979) :
- Page 203: Three Riddles of Plato (Jackson T. Carle, Sky and Telescope, 1955).
- Page 236: Unusual Lunar Phenomenon (A.V.Goddard, Popular Astronomy, 1932).
[/Alphabetical%20Index Named Featues] -- Prev: [/Plaskett Plaskett] -- Next: [/Rimae%20Plato Rimae Plato]
This page has been edited 1 times. The last modification was made by - tychocrater tychocrater on Jun 13, 2009 3:24 pm - afx2u3